Statistics
| Revision:

svn-gvsig-desktop / tags / v1_1_Build_1000 / libraries / libCq CMS for java.old / src / org / cresques / cts / GeoCalc.java @ 11885

History | View | Annotate | Download (16 KB)

1
/*
2
 * Cresques Mapping Suite. Graphic Library for constructing mapping applications.
3
 *
4
 * Copyright (C) 2004-5.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,USA.
19
 *
20
 * For more information, contact:
21
 *
22
 * cresques@gmail.com
23
 */
24
package org.cresques.cts;
25

    
26
import java.awt.geom.Point2D;
27

    
28

    
29
/**
30
 * Operaciones relacionadas con las proyecciones y sistemas
31
 * de coordenadas.
32
 * @author Luis W. Sevilla (sevilla_lui@gva.es)
33
 */
34
public class GeoCalc {
35
    IProjection proj;
36

    
37
    /**
38
     *
39
     * @param proj
40
     */
41
    public GeoCalc(IProjection proj) {
42
        this.proj = proj;
43
    }
44

    
45
    /**
46
     * Distancia entre dos puntos en la esfera.
47
     * Los puntos deben estar en coordenadas geogr?ficas
48
     * @param pt1
49
     * @param pt2
50
     * @return distancia en km.
51
     */
52
    public double distanceGeo(Point2D pt1, Point2D pt2) {
53
        double R2 = Math.pow(proj.getDatum().getESemiMajorAxis(), 2);
54
        double dLat = Math.toRadians(pt2.getY() - pt1.getY());
55
        double dLong = Math.toRadians(pt2.getX() - pt1.getX());
56

    
57
        double alfa = Math.toRadians(pt1.getY());
58
        double alfa2 = Math.toRadians(pt2.getY());
59

    
60
        if (Math.abs(alfa2) < Math.abs(alfa)) {
61
            alfa = alfa2;
62
        }
63

    
64
        double ds2 = (R2 * dLat * dLat) +
65
                     (R2 * Math.cos(alfa) * Math.cos(alfa) * dLong * dLong);
66

    
67
        return Math.sqrt(ds2);
68
    }
69

    
70
    /**
71
     * Distancia entre dos puntos en el elipsoide.
72
     * Los puntos deben estar en coordenadas geogr?ficas
73
     * ver http://www.codeguru.com/Cpp/Cpp/algorithms/general/article.php/c5115/
74
     * @param lat1
75
     * @param lon1
76
     * @param lat2
77
     * @param lon2
78
     * @return
79
     */
80
    public double distanceEli(Point2D pt1, Point2D pt2) {
81
        double lat1 = Math.toRadians(pt1.getY());
82
        double lon1 = -Math.toRadians(pt1.getX());
83
        double lat2 = Math.toRadians(pt2.getY());
84
        double lon2 = -Math.toRadians(pt2.getX());
85

    
86
        double F = (lat1 + lat2) / 2D;
87
        double G = (lat1 - lat2) / 2D;
88
        double L = (lon1 - lon2) / 2D;
89

    
90
        double sing = Math.sin(G);
91
        double cosl = Math.cos(L);
92
        double cosf = Math.cos(F);
93
        double sinl = Math.sin(L);
94
        double sinf = Math.sin(F);
95
        double cosg = Math.cos(G);
96

    
97
        double flat = 1D / proj.getDatum().getEIFlattening();
98

    
99
        double S = (sing * sing * cosl * cosl) + (cosf * cosf * sinl * sinl);
100
        double C = (cosg * cosg * cosl * cosl) + (sinf * sinf * sinl * sinl);
101
        double W = Math.atan2(Math.sqrt(S), Math.sqrt(C));
102
        double R = Math.sqrt((S * C)) / W;
103
        double H1 = ((3D * R) - 1D) / (2D * C);
104
        double H2 = ((3D * R) + 1D) / (2D * S);
105
        double D = 2D * W * proj.getDatum().getESemiMajorAxis();
106

    
107
        return (D * ((1D + (flat * H1 * sinf * sinf * cosg * cosg)) -
108
               (flat * H2 * cosf * cosf * sing * sing)));
109
    }
110

    
111
    /**
112
     * Algrothims from Geocentric Datum of Australia Technical Manual
113
     *
114
     * http://www.anzlic.org.au/icsm/gdatum/chapter4.html
115
     *
116
     * This page last updated 11 May 1999
117
     *
118
     * Computations on the Ellipsoid
119
     *
120
     * There are a number of formulae that are available
121
     * to calculate accurate geodetic positions,
122
     * azimuths and distances on the ellipsoid.
123
     *
124
     * Vincenty's formulae (Vincenty, 1975) may be used
125
     * for lines ranging from a few cm to nearly 20,000 km,
126
     * with millimetre accuracy.
127
     * The formulae have been extensively tested
128
     * for the Australian region, by comparison with results
129
     * from other formulae (Rainsford, 1955 & Sodano, 1965).
130
     *
131
     * * Inverse problem: azimuth and distance from known
132
     *                 latitudes and longitudes
133
     * * Direct problem: Latitude and longitude from known
134
     *                 position, azimuth and distance.
135
     * * Sample data
136
     * * Excel spreadsheet
137
     *
138
     * Vincenty's Inverse formulae
139
     * Given: latitude and longitude of two points
140
     *                 (phi1, lembda1 and phi2, lembda2),
141
     * Calculate: the ellipsoidal distance (s) and
142
     * forward and reverse azimuths between the points (alpha12, alpha21).
143
     */
144
    /**
145
     * Devuelve la distancia entre dos puntos usando las formulas
146
     * de vincenty.
147
     * @param pt1
148
     * @param pt2
149
     * @return
150
     */
151
    public double distanceVincenty(Point2D pt1, Point2D pt2) {
152
        return distanceAzimutVincenty(pt1, pt2).dist;
153
    }
154

    
155
    /**
156
     * Returns the distance between two geographic points on the ellipsoid
157
     *        and the forward and reverse azimuths between these points.
158
     *       lats, longs and azimuths are in decimal degrees, distance in metres
159
     *        Returns ( s, alpha12,  alpha21 ) as a tuple
160
     * @param pt1
161
     * @param pt2
162
     * @return
163
     */
164
    public GeoData distanceAzimutVincenty(Point2D pt1, Point2D pt2) {
165
        GeoData gd = new GeoData(0, 0);
166
        double f = 1D / proj.getDatum().getEIFlattening();
167
        double a = proj.getDatum().getESemiMajorAxis();
168
        double phi1 = pt1.getY();
169
        double lembda1 = pt1.getX();
170
        double phi2 = pt2.getY();
171
        double lembda2 = pt2.getX();
172

    
173
        if ((Math.abs(phi2 - phi1) < 1e-8) &&
174
                (Math.abs(lembda2 - lembda1) < 1e-8)) {
175
            return gd;
176
        }
177

    
178
        double piD4 = Math.atan(1.0);
179
        double two_pi = piD4 * 8.0;
180

    
181
        phi1 = (phi1 * piD4) / 45.0;
182
        lembda1 = (lembda1 * piD4) / 45.0; // unfortunately lambda is a key word!
183
        phi2 = (phi2 * piD4) / 45.0;
184
        lembda2 = (lembda2 * piD4) / 45.0;
185

    
186
        double b = a * (1.0 - f);
187

    
188
        double TanU1 = (1 - f) * Math.tan(phi1);
189
        double TanU2 = (1 - f) * Math.tan(phi2);
190

    
191
        double U1 = Math.atan(TanU1);
192
        double U2 = Math.atan(TanU2);
193

    
194
        double lembda = lembda2 - lembda1;
195
        double last_lembda = -4000000.0; // an impossibe value
196
        double omega = lembda;
197

    
198
        // Iterate the following equations, 
199
        //  until there is no significant change in lembda 
200
        double Sin_sigma = 0;
201

    
202
        // Iterate the following equations, 
203
        //  until there is no significant change in lembda 
204
        double Cos_sigma = 0;
205
        double Cos2sigma_m = 0;
206
        double alpha = 0;
207
        double sigma = 0;
208
        double sqr_sin_sigma = 0;
209

    
210
        while ((last_lembda < -3000000.0) ||
211
                   ((lembda != 0) &&
212
                   (Math.abs((last_lembda - lembda) / lembda) > 1.0e-9))) {
213
            sqr_sin_sigma = Math.pow(Math.cos(U2) * Math.sin(lembda), 2) +
214
                            Math.pow(((Math.cos(U1) * Math.sin(U2)) -
215
                                     (Math.sin(U1) * Math.cos(U2) * Math.cos(lembda))),
216
                                     2);
217

    
218
            Sin_sigma = Math.sqrt(sqr_sin_sigma);
219

    
220
            Cos_sigma = (Math.sin(U1) * Math.sin(U2)) +
221
                        (Math.cos(U1) * Math.cos(U2) * Math.cos(lembda));
222

    
223
            sigma = Math.atan2(Sin_sigma, Cos_sigma);
224

    
225
            double Sin_alpha = (Math.cos(U1) * Math.cos(U2) * Math.sin(lembda)) / Math.sin(sigma);
226
            alpha = Math.asin(Sin_alpha);
227

    
228
            Cos2sigma_m = Math.cos(sigma) -
229
                          ((2 * Math.sin(U1) * Math.sin(U2)) / Math.pow(Math.cos(alpha),
230
                                                                        2));
231

    
232
            double C = (f / 16) * Math.pow(Math.cos(alpha), 2) * (4 +
233
                       (f * (4 - (3 * Math.pow(Math.cos(alpha), 2)))));
234

    
235
            last_lembda = lembda;
236

    
237
            lembda = omega +
238
                     ((1 - C) * f * Math.sin(alpha) * (sigma +
239
                     (C * Math.sin(sigma) * (Cos2sigma_m +
240
                     (C * Math.cos(sigma) * (-1 +
241
                     (2 * Math.pow(Cos2sigma_m, 2))))))));
242
        }
243

    
244
        double u2 = (Math.pow(Math.cos(alpha), 2) * ((a * a) - (b * b))) / (b * b);
245

    
246
        double A = 1 +
247
                   ((u2 / 16384) * (4096 +
248
                   (u2 * (-768 + (u2 * (320 - (175 * u2)))))));
249

    
250
        double B = (u2 / 1024) * (256 +
251
                   (u2 * (-128 + (u2 * (74 - (47 * u2))))));
252

    
253
        double delta_sigma = B * Sin_sigma * (Cos2sigma_m +
254
                             ((B / 4) * ((Cos_sigma * (-1 +
255
                             (2 * Math.pow(Cos2sigma_m, 2)))) -
256
                             ((B / 6) * Cos2sigma_m * (-3 +
257
                             (4 * sqr_sin_sigma)) * (-3 +
258
                             (4 * Math.pow(Cos2sigma_m, 2)))))));
259

    
260
        double s = b * A * (sigma - delta_sigma);
261

    
262
        double alpha12 = Math.atan2((Math.cos(U2) * Math.sin(lembda)),
263
                                    ((Math.cos(U1) * Math.sin(U2)) -
264
                                    (Math.sin(U1) * Math.cos(U2) * Math.cos(lembda))));
265

    
266
        double alpha21 = Math.atan2((Math.cos(U1) * Math.sin(lembda)),
267
                                    ((-Math.sin(U1) * Math.cos(U2)) +
268
                                    (Math.cos(U1) * Math.sin(U2) * Math.cos(lembda))));
269

    
270
        if (alpha12 < 0.0) {
271
            alpha12 = alpha12 + two_pi;
272
        }
273

    
274
        if (alpha12 > two_pi) {
275
            alpha12 = alpha12 - two_pi;
276
        }
277

    
278
        alpha21 = alpha21 + (two_pi / 2.0);
279

    
280
        if (alpha21 < 0.0) {
281
            alpha21 = alpha21 + two_pi;
282
        }
283

    
284
        if (alpha21 > two_pi) {
285
            alpha21 = alpha21 - two_pi;
286
        }
287

    
288
        alpha12 = (alpha12 * 45.0) / piD4;
289
        alpha21 = (alpha21 * 45.0) / piD4;
290

    
291
        return new GeoData(0, 0, s, alpha12, alpha21);
292
    }
293

    
294
    /**
295
     * Vincenty's Direct formulae
296
     * Given: latitude and longitude of a point (phi1, lembda1) and
297
     * the geodetic azimuth (alpha12)
298
     * and ellipsoidal distance in metres (s) to a second point,
299
     *
300
     * Calculate: the latitude and longitude of the second point (phi2, lembda2)
301
     * and the reverse azimuth (alpha21).
302
     */
303
    /**
304
     * Returns the lat and long of projected point and reverse azimuth
305
     *        given a reference point and a distance and azimuth to project.
306
     *  lats, longs and azimuths are passed in decimal degrees.
307
     * Returns ( phi2,  lambda2,  alpha21 ) as a tuple
308
     * @param pt
309
     * @param azimut
310
     * @param dist
311
     * @return
312
     */
313
    public GeoData getPointVincenty(Point2D pt, double azimut, double dist) {
314
        GeoData ret = new GeoData(0, 0);
315
        double f = 1D / proj.getDatum().getEIFlattening();
316
        double a = proj.getDatum().getESemiMajorAxis();
317
        double phi1 = pt.getY();
318
        double lembda1 = pt.getX();
319
        double alpha12 = azimut;
320
        double s = dist;
321

    
322
        double piD4 = Math.atan(1.0);
323
        double two_pi = piD4 * 8.0;
324

    
325
        phi1 = (phi1 * piD4) / 45.0;
326
        lembda1 = (lembda1 * piD4) / 45.0;
327
        alpha12 = (alpha12 * piD4) / 45.0;
328

    
329
        if (alpha12 < 0.0) {
330
            alpha12 = alpha12 + two_pi;
331
        }
332

    
333
        if (alpha12 > two_pi) {
334
            alpha12 = alpha12 - two_pi;
335
        }
336

    
337
        double b = a * (1.0 - f);
338

    
339
        double TanU1 = (1 - f) * Math.tan(phi1);
340
        double U1 = Math.atan(TanU1);
341
        double sigma1 = Math.atan2(TanU1, Math.cos(alpha12));
342
        double Sinalpha = Math.cos(U1) * Math.sin(alpha12);
343
        double cosalpha_sq = 1.0 - (Sinalpha * Sinalpha);
344

    
345
        double u2 = (cosalpha_sq * ((a * a) - (b * b))) / (b * b);
346
        double A = 1.0 +
347
                   ((u2 / 16384) * (4096 +
348
                   (u2 * (-768 + (u2 * (320 - (175 * u2)))))));
349
        double B = (u2 / 1024) * (256 +
350
                   (u2 * (-128 + (u2 * (74 - (47 * u2))))));
351

    
352
        // Starting with the approximation
353
        double sigma = (s / (b * A));
354

    
355
        double last_sigma = (2.0 * sigma) + 2.0; // something impossible
356

    
357
        // Iterate the following three equations 
358
        //  until there is no significant change in sigma 
359
        // two_sigma_m , delta_sigma
360
        double two_sigma_m = 0;
361

    
362
        while (Math.abs((last_sigma - sigma) / sigma) > 1.0e-9) {
363
            two_sigma_m = (2 * sigma1) + sigma;
364

    
365
            double delta_sigma = B * Math.sin(sigma) * (Math.cos(two_sigma_m) +
366
                                 ((B / 4) * (Math.cos(sigma) * ((-1 +
367
                                 (2 * Math.pow(Math.cos(two_sigma_m), 2))) -
368
                                 ((B / 6) * Math.cos(two_sigma_m) * (-3 +
369
                                 (4 * Math.pow(Math.sin(sigma), 2))) * (-3 +
370
                                 (4 * Math.pow(Math.cos(two_sigma_m), 2))))))));
371

    
372
            last_sigma = sigma;
373
            sigma = (s / (b * A)) + delta_sigma;
374
        }
375

    
376
        double phi2 = Math.atan2(((Math.sin(U1) * Math.cos(sigma)) +
377
                                 (Math.cos(U1) * Math.sin(sigma) * Math.cos(alpha12))),
378
                                 ((1 - f) * Math.sqrt(Math.pow(Sinalpha, 2) +
379
                                                      Math.pow((Math.sin(U1) * Math.sin(sigma)) -
380
                                                               (Math.cos(U1) * Math.cos(sigma) * Math.cos(alpha12)),
381
                                                               2))));
382

    
383
        double lembda = Math.atan2((Math.sin(sigma) * Math.sin(alpha12)),
384
                                   ((Math.cos(U1) * Math.cos(sigma)) -
385
                                   (Math.sin(U1) * Math.sin(sigma) * Math.cos(alpha12))));
386

    
387
        double C = (f / 16) * cosalpha_sq * (4 + (f * (4 - (3 * cosalpha_sq))));
388

    
389
        double omega = lembda -
390
                       ((1 - C) * f * Sinalpha * (sigma +
391
                       (C * Math.sin(sigma) * (Math.cos(two_sigma_m) +
392
                       (C * Math.cos(sigma) * (-1 +
393
                       (2 * Math.pow(Math.cos(two_sigma_m), 2))))))));
394

    
395
        double lembda2 = lembda1 + omega;
396

    
397
        double alpha21 = Math.atan2(Sinalpha,
398
                                    ((-Math.sin(U1) * Math.sin(sigma)) +
399
                                    (Math.cos(U1) * Math.cos(sigma) * Math.cos(alpha12))));
400

    
401
        alpha21 = alpha21 + (two_pi / 2.0);
402

    
403
        if (alpha21 < 0.0) {
404
            alpha21 = alpha21 + two_pi;
405
        }
406

    
407
        if (alpha21 > two_pi) {
408
            alpha21 = alpha21 - two_pi;
409
        }
410

    
411
        phi2 = (phi2 * 45.0) / piD4;
412
        lembda2 = (lembda2 * 45.0) / piD4;
413
        alpha21 = (alpha21 * 45.0) / piD4;
414

    
415
        ret.pt = new Point2D.Double(lembda2, phi2);
416
        ret.azimut = alpha21;
417

    
418
        return ret;
419
    }
420

    
421
    /**
422
     * Superficie de un triangulo (esf?rico). Los puntos deben de estar
423
     * en coordenadas geogr?ficas.
424
     * @param pt1
425
     * @param pt2
426
     * @param pt3
427
     * @return
428
     */
429
    public double surfaceSphere(Point2D pt1, Point2D pt2, Point2D pt3) {
430
        double sup = -1;
431
        double A = distanceGeo(pt1, pt2);
432
        double B = distanceGeo(pt2, pt3);
433
        double C = distanceGeo(pt3, pt1);
434
        sup = (((A + B + C) - Math.toRadians(180D)) * Math.PI * proj.getDatum()
435
                                                                    .getESemiMajorAxis()) / Math.toRadians(180D);
436

    
437
        return sup;
438
    }
439

    
440
    /*
441
     * F?rmulas de Vincenty's.
442
     * (pasadas de http://wegener.mechanik.tu-darmstadt.de/GMT-Help/Archiv/att-8710/Geodetic_py
443
     * http://www.icsm.gov.au/icsm/gda/gdatm/index.html
444
     */
445
    class GeoData {
446
        Point2D pt;
447
        double azimut;
448
        double revAzimut;
449
        double dist;
450

    
451
        public GeoData(double x, double y) {
452
            pt = new Point2D.Double(x, y);
453
            azimut = revAzimut = dist = 0;
454
        }
455

    
456
        public GeoData(double x, double y, double dist, double azi, double rAzi) {
457
            pt = new Point2D.Double(x, y);
458
            azimut = azi;
459
            revAzimut = rAzi;
460
            this.dist = dist;
461
        }
462
    }
463
}