Statistics
| Revision:

svn-gvsig-desktop / tags / v1_1_Build_1008 / extensions / extScripting / scripts / jython / Lib / profile.py @ 12520

History | View | Annotate | Download (20.2 KB)

1
#! /usr/bin/env python
2
#
3
# Class for profiling python code. rev 1.0  6/2/94
4
#
5
# Based on prior profile module by Sjoerd Mullender...
6
#   which was hacked somewhat by: Guido van Rossum
7
#
8
# See profile.doc for more information
9

    
10
"""Class for profiling Python code."""
11

    
12
# Copyright 1994, by InfoSeek Corporation, all rights reserved.
13
# Written by James Roskind
14
#
15
# Permission to use, copy, modify, and distribute this Python software
16
# and its associated documentation for any purpose (subject to the
17
# restriction in the following sentence) without fee is hereby granted,
18
# provided that the above copyright notice appears in all copies, and
19
# that both that copyright notice and this permission notice appear in
20
# supporting documentation, and that the name of InfoSeek not be used in
21
# advertising or publicity pertaining to distribution of the software
22
# without specific, written prior permission.  This permission is
23
# explicitly restricted to the copying and modification of the software
24
# to remain in Python, compiled Python, or other languages (such as C)
25
# wherein the modified or derived code is exclusively imported into a
26
# Python module.
27
#
28
# INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
29
# SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
30
# FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
31
# SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
32
# RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
33
# CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
34
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
35

    
36

    
37

    
38
import sys
39
import os
40
import time
41
import marshal
42

    
43
__all__ = ["run","help","Profile"]
44

    
45
# Sample timer for use with
46
#i_count = 0
47
#def integer_timer():
48
#       global i_count
49
#       i_count = i_count + 1
50
#       return i_count
51
#itimes = integer_timer # replace with C coded timer returning integers
52

    
53
#**************************************************************************
54
# The following are the static member functions for the profiler class
55
# Note that an instance of Profile() is *not* needed to call them.
56
#**************************************************************************
57

    
58
def run(statement, filename=None):
59
    """Run statement under profiler optionally saving results in filename
60

61
    This function takes a single argument that can be passed to the
62
    "exec" statement, and an optional file name.  In all cases this
63
    routine attempts to "exec" its first argument and gather profiling
64
    statistics from the execution. If no file name is present, then this
65
    function automatically prints a simple profiling report, sorted by the
66
    standard name string (file/line/function-name) that is presented in
67
    each line.
68
    """
69
    prof = Profile()
70
    try:
71
        prof = prof.run(statement)
72
    except SystemExit:
73
        pass
74
    if filename is not None:
75
        prof.dump_stats(filename)
76
    else:
77
        return prof.print_stats()
78

    
79
# print help
80
def help():
81
    for dirname in sys.path:
82
        fullname = os.path.join(dirname, 'profile.doc')
83
        if os.path.exists(fullname):
84
            sts = os.system('${PAGER-more} '+fullname)
85
            if sts: print '*** Pager exit status:', sts
86
            break
87
    else:
88
        print 'Sorry, can\'t find the help file "profile.doc"',
89
        print 'along the Python search path'
90

    
91

    
92
class Profile:
93
    """Profiler class.
94

95
    self.cur is always a tuple.  Each such tuple corresponds to a stack
96
    frame that is currently active (self.cur[-2]).  The following are the
97
    definitions of its members.  We use this external "parallel stack" to
98
    avoid contaminating the program that we are profiling. (old profiler
99
    used to write into the frames local dictionary!!) Derived classes
100
    can change the definition of some entries, as long as they leave
101
    [-2:] intact.
102

103
    [ 0] = Time that needs to be charged to the parent frame's function.
104
           It is used so that a function call will not have to access the
105
           timing data for the parent frame.
106
    [ 1] = Total time spent in this frame's function, excluding time in
107
           subfunctions
108
    [ 2] = Cumulative time spent in this frame's function, including time in
109
           all subfunctions to this frame.
110
    [-3] = Name of the function that corresponds to this frame.
111
    [-2] = Actual frame that we correspond to (used to sync exception handling)
112
    [-1] = Our parent 6-tuple (corresponds to frame.f_back)
113

114
    Timing data for each function is stored as a 5-tuple in the dictionary
115
    self.timings[].  The index is always the name stored in self.cur[4].
116
    The following are the definitions of the members:
117

118
    [0] = The number of times this function was called, not counting direct
119
          or indirect recursion,
120
    [1] = Number of times this function appears on the stack, minus one
121
    [2] = Total time spent internal to this function
122
    [3] = Cumulative time that this function was present on the stack.  In
123
          non-recursive functions, this is the total execution time from start
124
          to finish of each invocation of a function, including time spent in
125
          all subfunctions.
126
    [5] = A dictionary indicating for each function name, the number of times
127
          it was called by us.
128
    """
129

    
130
    def __init__(self, timer=None):
131
        self.timings = {}
132
        self.cur = None
133
        self.cmd = ""
134

    
135
        self.dispatch = {  \
136
                  'call'     : self.trace_dispatch_call, \
137
                  'return'   : self.trace_dispatch_return, \
138
                  'exception': self.trace_dispatch_exception, \
139
                  }
140

    
141
        if not timer:
142
            if os.name == 'mac':
143
                import MacOS
144
                self.timer = MacOS.GetTicks
145
                self.dispatcher = self.trace_dispatch_mac
146
                self.get_time = self.get_time_mac
147
            elif hasattr(time, 'clock'):
148
                self.timer = time.clock
149
                self.dispatcher = self.trace_dispatch_i
150
            elif hasattr(os, 'times'):
151
                self.timer = os.times
152
                self.dispatcher = self.trace_dispatch
153
            else:
154
                self.timer = time.time
155
                self.dispatcher = self.trace_dispatch_i
156
        else:
157
            self.timer = timer
158
            t = self.timer() # test out timer function
159
            try:
160
                if len(t) == 2:
161
                    self.dispatcher = self.trace_dispatch
162
                else:
163
                    self.dispatcher = self.trace_dispatch_l
164
            except TypeError:
165
                self.dispatcher = self.trace_dispatch_i
166
        self.t = self.get_time()
167
        self.simulate_call('profiler')
168

    
169

    
170
    def get_time(self): # slow simulation of method to acquire time
171
        t = self.timer()
172
        if type(t) == type(()) or type(t) == type([]):
173
            t = reduce(lambda x,y: x+y, t, 0)
174
        return t
175

    
176
    def get_time_mac(self):
177
        return self.timer()/60.0
178

    
179
    # Heavily optimized dispatch routine for os.times() timer
180

    
181
    def trace_dispatch(self, frame, event, arg):
182
        t = self.timer()
183
        t = t[0] + t[1] - self.t        # No Calibration constant
184
        # t = t[0] + t[1] - self.t - .00053 # Calibration constant
185

    
186
        if self.dispatch[event](frame,t):
187
            t = self.timer()
188
            self.t = t[0] + t[1]
189
        else:
190
            r = self.timer()
191
            self.t = r[0] + r[1] - t # put back unrecorded delta
192
        return
193

    
194

    
195

    
196
    # Dispatch routine for best timer program (return = scalar integer)
197

    
198
    def trace_dispatch_i(self, frame, event, arg):
199
        t = self.timer() - self.t # - 1 # Integer calibration constant
200
        if self.dispatch[event](frame,t):
201
            self.t = self.timer()
202
        else:
203
            self.t = self.timer() - t  # put back unrecorded delta
204
        return
205

    
206
    # Dispatch routine for macintosh (timer returns time in ticks of 1/60th second)
207

    
208
    def trace_dispatch_mac(self, frame, event, arg):
209
        t = self.timer()/60.0 - self.t # - 1 # Integer calibration constant
210
        if self.dispatch[event](frame,t):
211
            self.t = self.timer()/60.0
212
        else:
213
            self.t = self.timer()/60.0 - t  # put back unrecorded delta
214
        return
215

    
216

    
217
    # SLOW generic dispatch routine for timer returning lists of numbers
218

    
219
    def trace_dispatch_l(self, frame, event, arg):
220
        t = self.get_time() - self.t
221

    
222
        if self.dispatch[event](frame,t):
223
            self.t = self.get_time()
224
        else:
225
            self.t = self.get_time()-t # put back unrecorded delta
226
        return
227

    
228

    
229
    def trace_dispatch_exception(self, frame, t):
230
        rt, rtt, rct, rfn, rframe, rcur = self.cur
231
        if (not rframe is frame) and rcur:
232
            return self.trace_dispatch_return(rframe, t)
233
        return 0
234

    
235

    
236
    def trace_dispatch_call(self, frame, t):
237
        fcode = frame.f_code
238
        fn = (fcode.co_filename, fcode.co_firstlineno, fcode.co_name)
239
        self.cur = (t, 0, 0, fn, frame, self.cur)
240
        if self.timings.has_key(fn):
241
            cc, ns, tt, ct, callers = self.timings[fn]
242
            self.timings[fn] = cc, ns + 1, tt, ct, callers
243
        else:
244
            self.timings[fn] = 0, 0, 0, 0, {}
245
        return 1
246

    
247
    def trace_dispatch_return(self, frame, t):
248
        # if not frame is self.cur[-2]: raise "Bad return", self.cur[3]
249

    
250
        # Prefix "r" means part of the Returning or exiting frame
251
        # Prefix "p" means part of the Previous or older frame
252

    
253
        rt, rtt, rct, rfn, frame, rcur = self.cur
254
        rtt = rtt + t
255
        sft = rtt + rct
256

    
257
        pt, ptt, pct, pfn, pframe, pcur = rcur
258
        self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
259

    
260
        cc, ns, tt, ct, callers = self.timings[rfn]
261
        if not ns:
262
            ct = ct + sft
263
            cc = cc + 1
264
        if callers.has_key(pfn):
265
            callers[pfn] = callers[pfn] + 1  # hack: gather more
266
            # stats such as the amount of time added to ct courtesy
267
            # of this specific call, and the contribution to cc
268
            # courtesy of this call.
269
        else:
270
            callers[pfn] = 1
271
        self.timings[rfn] = cc, ns - 1, tt+rtt, ct, callers
272

    
273
        return 1
274

    
275
    # The next few function play with self.cmd. By carefully preloading
276
    # our parallel stack, we can force the profiled result to include
277
    # an arbitrary string as the name of the calling function.
278
    # We use self.cmd as that string, and the resulting stats look
279
    # very nice :-).
280

    
281
    def set_cmd(self, cmd):
282
        if self.cur[-1]: return   # already set
283
        self.cmd = cmd
284
        self.simulate_call(cmd)
285

    
286
    class fake_code:
287
        def __init__(self, filename, line, name):
288
            self.co_filename = filename
289
            self.co_line = line
290
            self.co_name = name
291
            self.co_firstlineno = 0
292

    
293
        def __repr__(self):
294
            return repr((self.co_filename, self.co_line, self.co_name))
295

    
296
    class fake_frame:
297
        def __init__(self, code, prior):
298
            self.f_code = code
299
            self.f_back = prior
300

    
301
    def simulate_call(self, name):
302
        code = self.fake_code('profile', 0, name)
303
        if self.cur:
304
            pframe = self.cur[-2]
305
        else:
306
            pframe = None
307
        frame = self.fake_frame(code, pframe)
308
        a = self.dispatch['call'](frame, 0)
309
        return
310

    
311
    # collect stats from pending stack, including getting final
312
    # timings for self.cmd frame.
313

    
314
    def simulate_cmd_complete(self):
315
        t = self.get_time() - self.t
316
        while self.cur[-1]:
317
            # We *can* cause assertion errors here if
318
            # dispatch_trace_return checks for a frame match!
319
            a = self.dispatch['return'](self.cur[-2], t)
320
            t = 0
321
        self.t = self.get_time() - t
322

    
323

    
324
    def print_stats(self):
325
        import pstats
326
        pstats.Stats(self).strip_dirs().sort_stats(-1). \
327
                  print_stats()
328

    
329
    def dump_stats(self, file):
330
        f = open(file, 'wb')
331
        self.create_stats()
332
        marshal.dump(self.stats, f)
333
        f.close()
334

    
335
    def create_stats(self):
336
        self.simulate_cmd_complete()
337
        self.snapshot_stats()
338

    
339
    def snapshot_stats(self):
340
        self.stats = {}
341
        for func in self.timings.keys():
342
            cc, ns, tt, ct, callers = self.timings[func]
343
            callers = callers.copy()
344
            nc = 0
345
            for func_caller in callers.keys():
346
                nc = nc + callers[func_caller]
347
            self.stats[func] = cc, nc, tt, ct, callers
348

    
349

    
350
    # The following two methods can be called by clients to use
351
    # a profiler to profile a statement, given as a string.
352

    
353
    def run(self, cmd):
354
        import __main__
355
        dict = __main__.__dict__
356
        return self.runctx(cmd, dict, dict)
357

    
358
    def runctx(self, cmd, globals, locals):
359
        self.set_cmd(cmd)
360
        sys.setprofile(self.dispatcher)
361
        try:
362
            exec cmd in globals, locals
363
        finally:
364
            sys.setprofile(None)
365
        return self
366

    
367
    # This method is more useful to profile a single function call.
368
    def runcall(self, func, *args):
369
        self.set_cmd(`func`)
370
        sys.setprofile(self.dispatcher)
371
        try:
372
            return apply(func, args)
373
        finally:
374
            sys.setprofile(None)
375

    
376

    
377
    #******************************************************************
378
    # The following calculates the overhead for using a profiler.  The
379
    # problem is that it takes a fair amount of time for the profiler
380
    # to stop the stopwatch (from the time it receives an event).
381
    # Similarly, there is a delay from the time that the profiler
382
    # re-starts the stopwatch before the user's code really gets to
383
    # continue.  The following code tries to measure the difference on
384
    # a per-event basis. The result can the be placed in the
385
    # Profile.dispatch_event() routine for the given platform.  Note
386
    # that this difference is only significant if there are a lot of
387
    # events, and relatively little user code per event.  For example,
388
    # code with small functions will typically benefit from having the
389
    # profiler calibrated for the current platform.  This *could* be
390
    # done on the fly during init() time, but it is not worth the
391
    # effort.  Also note that if too large a value specified, then
392
    # execution time on some functions will actually appear as a
393
    # negative number.  It is *normal* for some functions (with very
394
    # low call counts) to have such negative stats, even if the
395
    # calibration figure is "correct."
396
    #
397
    # One alternative to profile-time calibration adjustments (i.e.,
398
    # adding in the magic little delta during each event) is to track
399
    # more carefully the number of events (and cumulatively, the number
400
    # of events during sub functions) that are seen.  If this were
401
    # done, then the arithmetic could be done after the fact (i.e., at
402
    # display time).  Currently, we track only call/return events.
403
    # These values can be deduced by examining the callees and callers
404
    # vectors for each functions.  Hence we *can* almost correct the
405
    # internal time figure at print time (note that we currently don't
406
    # track exception event processing counts).  Unfortunately, there
407
    # is currently no similar information for cumulative sub-function
408
    # time.  It would not be hard to "get all this info" at profiler
409
    # time.  Specifically, we would have to extend the tuples to keep
410
    # counts of this in each frame, and then extend the defs of timing
411
    # tuples to include the significant two figures. I'm a bit fearful
412
    # that this additional feature will slow the heavily optimized
413
    # event/time ratio (i.e., the profiler would run slower, fur a very
414
    # low "value added" feature.)
415
    #
416
    # Plugging in the calibration constant doesn't slow down the
417
    # profiler very much, and the accuracy goes way up.
418
    #**************************************************************
419

    
420
    def calibrate(self, m):
421
        # Modified by Tim Peters
422
        n = m
423
        s = self.get_time()
424
        while n:
425
            self.simple()
426
            n = n - 1
427
        f = self.get_time()
428
        my_simple = f - s
429
        #print "Simple =", my_simple,
430

    
431
        n = m
432
        s = self.get_time()
433
        while n:
434
            self.instrumented()
435
            n = n - 1
436
        f = self.get_time()
437
        my_inst = f - s
438
        # print "Instrumented =", my_inst
439
        avg_cost = (my_inst - my_simple)/m
440
        #print "Delta/call =", avg_cost, "(profiler fixup constant)"
441
        return avg_cost
442

    
443
    # simulate a program with no profiler activity
444
    def simple(self):
445
        a = 1
446
        pass
447

    
448
    # simulate a program with call/return event processing
449
    def instrumented(self):
450
        a = 1
451
        self.profiler_simulation(a, a, a)
452

    
453
    # simulate an event processing activity (from user's perspective)
454
    def profiler_simulation(self, x, y, z):
455
        t = self.timer()
456
        ## t = t[0] + t[1]
457
        self.ut = t
458

    
459

    
460

    
461
class OldProfile(Profile):
462
    """A derived profiler that simulates the old style profile, providing
463
    errant results on recursive functions. The reason for the usefulness of
464
    this profiler is that it runs faster (i.e., less overhead).  It still
465
    creates all the caller stats, and is quite useful when there is *no*
466
    recursion in the user's code.
467

468
    This code also shows how easy it is to create a modified profiler.
469
    """
470

    
471
    def trace_dispatch_exception(self, frame, t):
472
        rt, rtt, rct, rfn, rframe, rcur = self.cur
473
        if rcur and not rframe is frame:
474
            return self.trace_dispatch_return(rframe, t)
475
        return 0
476

    
477
    def trace_dispatch_call(self, frame, t):
478
        fn = `frame.f_code`
479

    
480
        self.cur = (t, 0, 0, fn, frame, self.cur)
481
        if self.timings.has_key(fn):
482
            tt, ct, callers = self.timings[fn]
483
            self.timings[fn] = tt, ct, callers
484
        else:
485
            self.timings[fn] = 0, 0, {}
486
        return 1
487

    
488
    def trace_dispatch_return(self, frame, t):
489
        rt, rtt, rct, rfn, frame, rcur = self.cur
490
        rtt = rtt + t
491
        sft = rtt + rct
492

    
493
        pt, ptt, pct, pfn, pframe, pcur = rcur
494
        self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
495

    
496
        tt, ct, callers = self.timings[rfn]
497
        if callers.has_key(pfn):
498
            callers[pfn] = callers[pfn] + 1
499
        else:
500
            callers[pfn] = 1
501
        self.timings[rfn] = tt+rtt, ct + sft, callers
502

    
503
        return 1
504

    
505

    
506
    def snapshot_stats(self):
507
        self.stats = {}
508
        for func in self.timings.keys():
509
            tt, ct, callers = self.timings[func]
510
            callers = callers.copy()
511
            nc = 0
512
            for func_caller in callers.keys():
513
                nc = nc + callers[func_caller]
514
            self.stats[func] = nc, nc, tt, ct, callers
515

    
516

    
517

    
518
class HotProfile(Profile):
519
    """The fastest derived profile example.  It does not calculate
520
    caller-callee relationships, and does not calculate cumulative
521
    time under a function.  It only calculates time spent in a
522
    function, so it runs very quickly due to its very low overhead.
523
    """
524

    
525
    def trace_dispatch_exception(self, frame, t):
526
        rt, rtt, rfn, rframe, rcur = self.cur
527
        if rcur and not rframe is frame:
528
            return self.trace_dispatch_return(rframe, t)
529
        return 0
530

    
531
    def trace_dispatch_call(self, frame, t):
532
        self.cur = (t, 0, frame, self.cur)
533
        return 1
534

    
535
    def trace_dispatch_return(self, frame, t):
536
        rt, rtt, frame, rcur = self.cur
537

    
538
        rfn = `frame.f_code`
539

    
540
        pt, ptt, pframe, pcur = rcur
541
        self.cur = pt, ptt+rt, pframe, pcur
542

    
543
        if self.timings.has_key(rfn):
544
            nc, tt = self.timings[rfn]
545
            self.timings[rfn] = nc + 1, rt + rtt + tt
546
        else:
547
            self.timings[rfn] =      1, rt + rtt
548

    
549
        return 1
550

    
551

    
552
    def snapshot_stats(self):
553
        self.stats = {}
554
        for func in self.timings.keys():
555
            nc, tt = self.timings[func]
556
            self.stats[func] = nc, nc, tt, 0, {}
557

    
558

    
559

    
560
#****************************************************************************
561
def Stats(*args):
562
    print 'Report generating functions are in the "pstats" module\a'
563

    
564

    
565
# When invoked as main program, invoke the profiler on a script
566
if __name__ == '__main__':
567
    import sys
568
    import os
569
    if not sys.argv[1:]:
570
        print "usage: profile.py scriptfile [arg] ..."
571
        sys.exit(2)
572

    
573
    filename = sys.argv[1]  # Get script filename
574

    
575
    del sys.argv[0]         # Hide "profile.py" from argument list
576

    
577
    # Insert script directory in front of module search path
578
    sys.path.insert(0, os.path.dirname(filename))
579

    
580
    run('execfile(' + `filename` + ')')