Statistics
| Revision:

svn-gvsig-desktop / tags / v1_1_2_Build_1045 / libraries / libjni-proj4 / src / PJ_sconics.c @ 38629

History | View | Annotate | Download (3.52 KB)

1
#ifndef lint
2
static const char SCCSID[]="@(#)PJ_sconics.c        4.1        94/05/22        GIE        REL";
3
#endif
4
#define PROJ_PARMS__ \
5
        double        n; \
6
        double        rho_c; \
7
        double        rho_0; \
8
        double        sig; \
9
        double        c1, c2; \
10
        int                type;
11
#define PJ_LIB__
12
#include        <projects.h>
13
#define EULER 0
14
#define MURD1 1
15
#define MURD2 2
16
#define MURD3 3
17
#define PCONIC 4
18
#define TISSOT 5
19
#define VITK1 6
20
#define EPS10        1.e-10
21
#define EPS 1e-10
22
#define LINE2 "\n\tConic, Sph\n\tlat_1= and lat_2="
23
PROJ_HEAD(tissot, "Tissot")
24
        LINE2;
25
PROJ_HEAD(murd1, "Murdoch I")
26
        LINE2;
27
PROJ_HEAD(murd2, "Murdoch II")
28
        LINE2;
29
PROJ_HEAD(murd3, "Murdoch III")
30
        LINE2;
31
PROJ_HEAD(euler, "Euler")
32
        LINE2;
33
PROJ_HEAD(pconic, "Perspective Conic")
34
        LINE2;
35
PROJ_HEAD(vitk1, "Vitkovsky I")
36
        LINE2;
37
/* get common factors for simple conics */
38
        static int
39
phi12(PJ *P, double *del) {
40
        double p1, p2;
41
        int err = 0;
42

    
43
        if (!pj_param(P->params, "tlat_1").i ||
44
                !pj_param(P->params, "tlat_2").i) {
45
                err = -41;
46
        } else {
47
                p1 = pj_param(P->params, "rlat_1").f;
48
                p2 = pj_param(P->params, "rlat_2").f;
49
                *del = 0.5 * (p2 - p1);
50
                P->sig = 0.5 * (p2 + p1);
51
                err = (fabs(*del) < EPS || fabs(P->sig) < EPS) ? -42 : 0;
52
                *del = *del;
53
        }
54
        return err;
55
}
56
FORWARD(s_forward); /* spheroid */
57
        double rho;
58

    
59
        switch (P->type) {
60
        case MURD2:
61
                rho = P->rho_c + tan(P->sig - lp.phi);
62
                break;
63
        case PCONIC:
64
                rho = P->c2 * (P->c1 - tan(lp.phi));
65
                break;
66
        default:
67
                rho = P->rho_c - lp.phi;
68
                break;
69
        }
70
        xy.x = rho * sin( lp.lam *= P->n );
71
        xy.y = P->rho_0 - rho * cos(lp.lam);
72
        return (xy);
73
}
74
INVERSE(s_inverse); /* ellipsoid & spheroid */
75
        double rho;
76

    
77
        rho = hypot(xy.x, xy.y = P->rho_0 - xy.y);
78
        if (P->n < 0.) {
79
                rho = - rho;
80
                xy.x = - xy.x;
81
                xy.y = - xy.y;
82
        }
83
        lp.lam = atan2(xy.x, xy.y) / P->n;
84
        switch (P->type) {
85
        case PCONIC:
86
                lp.phi = atan(P->c1 - rho / P->c2) + P->sig;
87
                break;
88
        case MURD2:
89
                lp.phi = P->sig - atan(rho - P->rho_c);
90
                break;
91
        default:
92
                lp.phi = P->rho_c - rho;
93
        }
94
        return (lp);
95
}
96
FREEUP; if (P) pj_dalloc(P); }
97
        static PJ *
98
setup(PJ *P) {
99
        double del, cs;
100
        int i;
101

    
102
        if( (i = phi12(P, &del)) )
103
                E_ERROR(i);
104
        switch (P->type) {
105
        case TISSOT:
106
                P->n = sin(P->sig);
107
                cs = cos(del);
108
                P->rho_c = P->n / cs + cs / P->n;
109
                P->rho_0 = sqrt((P->rho_c - 2 * sin(P->phi0))/P->n);
110
                break;
111
        case MURD1:
112
                P->rho_c = sin(del)/(del * tan(P->sig)) + P->sig;
113
                P->rho_0 = P->rho_c - P->phi0;
114
                P->n = sin(P->sig);
115
                break;
116
        case MURD2:
117
                P->rho_c = (cs = sqrt(cos(del))) / tan(P->sig);
118
                P->rho_0 = P->rho_c + tan(P->sig - P->phi0);
119
                P->n = sin(P->sig) * cs;
120
                break;
121
        case MURD3:
122
                P->rho_c = del / (tan(P->sig) * tan(del)) + P->sig;
123
                P->rho_0 = P->rho_c - P->phi0;
124
                P->n = sin(P->sig) * sin(del) * tan(del) / (del * del);
125
                break;
126
        case EULER:
127
                P->n = sin(P->sig) * sin(del) / del;
128
                del *= 0.5;
129
                P->rho_c = del / (tan(del) * tan(P->sig)) + P->sig;        
130
                P->rho_0 = P->rho_c - P->phi0;
131
                break;
132
        case PCONIC:
133
                P->n = sin(P->sig);
134
                P->c2 = cos(del);
135
                P->c1 = 1./tan(P->sig);
136
                if (fabs(del = P->phi0 - P->sig) - EPS10 >= HALFPI)
137
                        E_ERROR(-43);
138
                P->rho_0 = P->c2 * (P->c1 - tan(del));
139
                break;
140
        case VITK1:
141
                P->n = (cs = tan(del)) * sin(P->sig) / del;
142
                P->rho_c = del / (cs * tan(P->sig)) + P->sig;
143
                P->rho_0 = P->rho_c - P->phi0;
144
                break;
145
        }
146
        P->inv = s_inverse;
147
        P->fwd = s_forward;
148
        P->es = 0;
149
        return (P);
150
}
151
ENTRY0(euler) P->type = EULER; ENDENTRY(setup(P))
152
ENTRY0(tissot) P->type = TISSOT; ENDENTRY(setup(P))
153
ENTRY0(murd1) P->type = MURD1; ENDENTRY(setup(P))
154
ENTRY0(murd2) P->type = MURD2; ENDENTRY(setup(P))
155
ENTRY0(murd3) P->type = MURD3; ENDENTRY(setup(P))
156
ENTRY0(pconic) P->type = PCONIC; ENDENTRY(setup(P))
157
ENTRY0(vitk1) P->type = VITK1; ENDENTRY(setup(P))