Statistics
| Revision:

svn-gvsig-desktop / trunk / libraries / libjni-proj4 / src / geocent.c @ 7098

History | View | Annotate | Download (15.5 KB)

1
/***************************************************************************/
2
/* RSC IDENTIFIER:  GEOCENTRIC
3
 *
4
 * ABSTRACT
5
 *
6
 *    This component provides conversions between Geodetic coordinates (latitude,
7
 *    longitude in radians and height in meters) and Geocentric coordinates
8
 *    (X, Y, Z) in meters.
9
 *
10
 * ERROR HANDLING
11
 *
12
 *    This component checks parameters for valid values.  If an invalid value
13
 *    is found, the error code is combined with the current error code using 
14
 *    the bitwise or.  This combining allows multiple error codes to be
15
 *    returned. The possible error codes are:
16
 *
17
 *      GEOCENT_NO_ERROR        : No errors occurred in function
18
 *      GEOCENT_LAT_ERROR       : Latitude out of valid range
19
 *                                 (-90 to 90 degrees)
20
 *      GEOCENT_LON_ERROR       : Longitude out of valid range
21
 *                                 (-180 to 360 degrees)
22
 *      GEOCENT_A_ERROR         : Semi-major axis lessthan or equal to zero
23
 *      GEOCENT_B_ERROR         : Semi-minor axis lessthan or equal to zero
24
 *      GEOCENT_A_LESS_B_ERROR  : Semi-major axis less than semi-minor axis
25
 *
26
 *
27
 * REUSE NOTES
28
 *
29
 *    GEOCENTRIC is intended for reuse by any application that performs
30
 *    coordinate conversions between geodetic coordinates and geocentric
31
 *    coordinates.
32
 *    
33
 *
34
 * REFERENCES
35
 *    
36
 *    An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion,
37
 *    Ralph Toms, February 1996  UCRL-JC-123138.
38
 *    
39
 *    Further information on GEOCENTRIC can be found in the Reuse Manual.
40
 *
41
 *    GEOCENTRIC originated from : U.S. Army Topographic Engineering Center
42
 *                                 Geospatial Information Division
43
 *                                 7701 Telegraph Road
44
 *                                 Alexandria, VA  22310-3864
45
 *
46
 * LICENSES
47
 *
48
 *    None apply to this component.
49
 *
50
 * RESTRICTIONS
51
 *
52
 *    GEOCENTRIC has no restrictions.
53
 *
54
 * ENVIRONMENT
55
 *
56
 *    GEOCENTRIC was tested and certified in the following environments:
57
 *
58
 *    1. Solaris 2.5 with GCC version 2.8.1
59
 *    2. Windows 95 with MS Visual C++ version 6
60
 *
61
 * MODIFICATIONS
62
 *
63
 *    Date              Description
64
 *    ----              -----------
65
 *    25-02-97          Original Code
66
 *
67
 * $Log: geocent.c,v $
68
 * Revision 1.5  2004/10/25 15:34:36  fwarmerdam
69
 * make names of geodetic funcs from geotrans unique
70
 *
71
 * Revision 1.4  2004/05/03 16:28:01  warmerda
72
 * Apply iterative solution to geocentric_to_geodetic as suggestion from
73
 * Lothar Gorling.
74
 * http://bugzilla.remotesensing.org/show_bug.cgi?id=563
75
 *
76
 * Revision 1.3  2002/01/08 15:04:08  warmerda
77
 * The latitude clamping fix from September in Convert_Geodetic_To_Geocentric
78
 * was botched.  Fixed up now.
79
 *
80
 */
81

    
82

    
83
/***************************************************************************/
84
/*
85
 *                               INCLUDES
86
 */
87
#include <math.h>
88
#include "geocent.h"
89
/*
90
 *    math.h     - is needed for calls to sin, cos, tan and sqrt.
91
 *    geocent.h  - is needed for Error codes and prototype error checking.
92
 */
93

    
94

    
95
/***************************************************************************/
96
/*
97
 *                               DEFINES
98
 */
99
#define PI         3.14159265358979323e0
100
#define PI_OVER_2  (PI / 2.0e0)
101
#define FALSE      0
102
#define TRUE       1
103
#define COS_67P5   0.38268343236508977  /* cosine of 67.5 degrees */
104
#define AD_C       1.0026000            /* Toms region 1 constant */
105

    
106

    
107
/***************************************************************************/
108
/*
109
 *                              GLOBAL DECLARATIONS
110
 */
111
/* Ellipsoid parameters, default to WGS 84 */
112
double Geocent_a = 6378137.0;     /* Semi-major axis of ellipsoid in meters */
113
double Geocent_b = 6356752.3142;  /* Semi-minor axis of ellipsoid           */
114

    
115
double Geocent_a2 = 40680631590769.0;        /* Square of semi-major axis */
116
double Geocent_b2 = 40408299984087.05;       /* Square of semi-minor axis */
117
double Geocent_e2 = 0.0066943799901413800;   /* Eccentricity squared  */
118
double Geocent_ep2 = 0.00673949675658690300; /* 2nd eccentricity squared */
119
/*
120
 * These state variables are for optimization purposes.  The only function
121
 * that should modify them is Set_Geocentric_Parameters.
122
 */
123

    
124

    
125
/***************************************************************************/
126
/*
127
 *                              FUNCTIONS     
128
 */
129

    
130

    
131
long pj_Set_Geocentric_Parameters (double a, double b) 
132

    
133
{ /* BEGIN Set_Geocentric_Parameters */
134
/*
135
 * The function Set_Geocentric_Parameters receives the ellipsoid parameters
136
 * as inputs and sets the corresponding state variables.
137
 *
138
 *    a  : Semi-major axis, in meters.          (input)
139
 *    b  : Semi-minor axis, in meters.          (input)
140
 */
141
  long Error_Code = GEOCENT_NO_ERROR;
142

    
143
  if (a <= 0.0)
144
    Error_Code |= GEOCENT_A_ERROR;
145
  if (b <= 0.0)
146
    Error_Code |= GEOCENT_B_ERROR;
147
  if (a < b)
148
    Error_Code |= GEOCENT_A_LESS_B_ERROR;
149
  if (!Error_Code)
150
  {
151
    Geocent_a = a;
152
    Geocent_b = b;
153
    Geocent_a2 = a * a;
154
    Geocent_b2 = b * b;
155
    Geocent_e2 = (Geocent_a2 - Geocent_b2) / Geocent_a2;
156
    Geocent_ep2 = (Geocent_a2 - Geocent_b2) / Geocent_b2;
157
  }
158
  return (Error_Code);
159
} /* END OF Set_Geocentric_Parameters */
160

    
161

    
162
void pj_Get_Geocentric_Parameters (double *a, 
163
                                double *b)
164
{ /* BEGIN Get_Geocentric_Parameters */
165
/*
166
 * The function Get_Geocentric_Parameters returns the ellipsoid parameters
167
 * to be used in geocentric coordinate conversions.
168
 *
169
 *    a  : Semi-major axis, in meters.          (output)
170
 *    b  : Semi-minor axis, in meters.          (output)
171
 */
172

    
173
  *a = Geocent_a;
174
  *b = Geocent_b;
175
} /* END OF Get_Geocentric_Parameters */
176

    
177

    
178
long pj_Convert_Geodetic_To_Geocentric (double Latitude,
179
                                     double Longitude,
180
                                     double Height,
181
                                     double *X,
182
                                     double *Y,
183
                                     double *Z) 
184
{ /* BEGIN Convert_Geodetic_To_Geocentric */
185
/*
186
 * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
187
 * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
188
 * according to the current ellipsoid parameters.
189
 *
190
 *    Latitude  : Geodetic latitude in radians                     (input)
191
 *    Longitude : Geodetic longitude in radians                    (input)
192
 *    Height    : Geodetic height, in meters                       (input)
193
 *    X         : Calculated Geocentric X coordinate, in meters    (output)
194
 *    Y         : Calculated Geocentric Y coordinate, in meters    (output)
195
 *    Z         : Calculated Geocentric Z coordinate, in meters    (output)
196
 *
197
 */
198
  long Error_Code = GEOCENT_NO_ERROR;
199
  double Rn;            /*  Earth radius at location  */
200
  double Sin_Lat;       /*  sin(Latitude)  */
201
  double Sin2_Lat;      /*  Square of sin(Latitude)  */
202
  double Cos_Lat;       /*  cos(Latitude)  */
203

    
204
  /*
205
  ** Don't blow up if Latitude is just a little out of the value
206
  ** range as it may just be a rounding issue.  Also removed longitude
207
  ** test, it should be wrapped by cos() and sin().  NFW for PROJ.4, Sep/2001.
208
  */
209
  if( Latitude < -PI_OVER_2 && Latitude > -1.001 * PI_OVER_2 )
210
      Latitude = -PI_OVER_2;
211
  else if( Latitude > PI_OVER_2 && Latitude < 1.001 * PI_OVER_2 )
212
      Latitude = PI_OVER_2;
213
  else if ((Latitude < -PI_OVER_2) || (Latitude > PI_OVER_2))
214
  { /* Latitude out of range */
215
    Error_Code |= GEOCENT_LAT_ERROR;
216
  }
217

    
218
  if (!Error_Code)
219
  { /* no errors */
220
    if (Longitude > PI)
221
      Longitude -= (2*PI);
222
    Sin_Lat = sin(Latitude);
223
    Cos_Lat = cos(Latitude);
224
    Sin2_Lat = Sin_Lat * Sin_Lat;
225
    Rn = Geocent_a / (sqrt(1.0e0 - Geocent_e2 * Sin2_Lat));
226
    *X = (Rn + Height) * Cos_Lat * cos(Longitude);
227
    *Y = (Rn + Height) * Cos_Lat * sin(Longitude);
228
    *Z = ((Rn * (1 - Geocent_e2)) + Height) * Sin_Lat;
229

    
230
  }
231
  return (Error_Code);
232
} /* END OF Convert_Geodetic_To_Geocentric */
233

    
234
/*
235
 * The function Convert_Geocentric_To_Geodetic converts geocentric
236
 * coordinates (X, Y, Z) to geodetic coordinates (latitude, longitude, 
237
 * and height), according to the current ellipsoid parameters.
238
 *
239
 *    X         : Geocentric X coordinate, in meters.         (input)
240
 *    Y         : Geocentric Y coordinate, in meters.         (input)
241
 *    Z         : Geocentric Z coordinate, in meters.         (input)
242
 *    Latitude  : Calculated latitude value in radians.       (output)
243
 *    Longitude : Calculated longitude value in radians.      (output)
244
 *    Height    : Calculated height value, in meters.         (output)
245
 */
246

    
247
#define USE_ITERATIVE_METHOD
248

    
249
void pj_Convert_Geocentric_To_Geodetic (double X,
250
                                     double Y, 
251
                                     double Z,
252
                                     double *Latitude,
253
                                     double *Longitude,
254
                                     double *Height)
255
{ /* BEGIN Convert_Geocentric_To_Geodetic */
256
#if !defined(USE_ITERATIVE_METHOD)
257
/*
258
 * The method used here is derived from 'An Improved Algorithm for
259
 * Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996
260
 */
261

    
262
/* Note: Variable names follow the notation used in Toms, Feb 1996 */
263

    
264
    double W;        /* distance from Z axis */
265
    double W2;       /* square of distance from Z axis */
266
    double T0;       /* initial estimate of vertical component */
267
    double T1;       /* corrected estimate of vertical component */
268
    double S0;       /* initial estimate of horizontal component */
269
    double S1;       /* corrected estimate of horizontal component */
270
    double Sin_B0;   /* sin(B0), B0 is estimate of Bowring aux variable */
271
    double Sin3_B0;  /* cube of sin(B0) */
272
    double Cos_B0;   /* cos(B0) */
273
    double Sin_p1;   /* sin(phi1), phi1 is estimated latitude */
274
    double Cos_p1;   /* cos(phi1) */
275
    double Rn;       /* Earth radius at location */
276
    double Sum;      /* numerator of cos(phi1) */
277
    int At_Pole;     /* indicates location is in polar region */
278

    
279
    At_Pole = FALSE;
280
    if (X != 0.0)
281
    {
282
        *Longitude = atan2(Y,X);
283
    }
284
    else
285
    {
286
        if (Y > 0)
287
        {
288
            *Longitude = PI_OVER_2;
289
        }
290
        else if (Y < 0)
291
        {
292
            *Longitude = -PI_OVER_2;
293
        }
294
        else
295
        {
296
            At_Pole = TRUE;
297
            *Longitude = 0.0;
298
            if (Z > 0.0)
299
            {  /* north pole */
300
                *Latitude = PI_OVER_2;
301
            }
302
            else if (Z < 0.0)
303
            {  /* south pole */
304
                *Latitude = -PI_OVER_2;
305
            }
306
            else
307
            {  /* center of earth */
308
                *Latitude = PI_OVER_2;
309
                *Height = -Geocent_b;
310
                return;
311
            } 
312
        }
313
    }
314
    W2 = X*X + Y*Y;
315
    W = sqrt(W2);
316
    T0 = Z * AD_C;
317
    S0 = sqrt(T0 * T0 + W2);
318
    Sin_B0 = T0 / S0;
319
    Cos_B0 = W / S0;
320
    Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
321
    T1 = Z + Geocent_b * Geocent_ep2 * Sin3_B0;
322
    Sum = W - Geocent_a * Geocent_e2 * Cos_B0 * Cos_B0 * Cos_B0;
323
    S1 = sqrt(T1*T1 + Sum * Sum);
324
    Sin_p1 = T1 / S1;
325
    Cos_p1 = Sum / S1;
326
    Rn = Geocent_a / sqrt(1.0 - Geocent_e2 * Sin_p1 * Sin_p1);
327
    if (Cos_p1 >= COS_67P5)
328
    {
329
        *Height = W / Cos_p1 - Rn;
330
    }
331
    else if (Cos_p1 <= -COS_67P5)
332
    {
333
        *Height = W / -Cos_p1 - Rn;
334
    }
335
    else
336
    {
337
        *Height = Z / Sin_p1 + Rn * (Geocent_e2 - 1.0);
338
    }
339
    if (At_Pole == FALSE)
340
    {
341
        *Latitude = atan(Sin_p1 / Cos_p1);
342
    }
343
#else /* defined(USE_ITERATIVE_METHOD) */
344
/*
345
* Reference...
346
* ============
347
* Wenzel, H.-G.(1985): Hochauflösende Kugelfunktionsmodelle für
348
* das Gravitationspotential der Erde. Wiss. Arb. Univ. Hannover
349
* Nr. 137, p. 130-131.
350

351
* Programmed by GGA- Leibniz-Institue of Applied Geophysics
352
*               Stilleweg 2
353
*               D-30655 Hannover
354
*               Federal Republic of Germany
355
*               Internet: www.gga-hannover.de
356
*
357
*               Hannover, March 1999, April 2004.
358
*               see also: comments in statements
359
* remarks:
360
* Mathematically exact and because of symmetry of rotation-ellipsoid,
361
* each point (X,Y,Z) has at least two solutions (Latitude1,Longitude1,Height1) and
362
* (Latitude2,Longitude2,Height2). Is point=(0.,0.,Z) (P=0.), so you get even
363
* four solutions,        every two symmetrical to the semi-minor axis.
364
* Here Height1 and Height2 have at least a difference in order of
365
* radius of curvature (e.g. (0,0,b)=> (90.,0.,0.) or (-90.,0.,-2b);
366
* (a+100.)*(sqrt(2.)/2.,sqrt(2.)/2.,0.) => (0.,45.,100.) or
367
* (0.,225.,-(2a+100.))).
368
* The algorithm always computes (Latitude,Longitude) with smallest |Height|.
369
* For normal computations, that means |Height|<10000.m, algorithm normally
370
* converges after to 2-3 steps!!!
371
* But if |Height| has the amount of length of ellipsoid's axis
372
* (e.g. -6300000.m),        algorithm needs about 15 steps.
373
*/
374

    
375
/* local defintions and variables */
376
/* end-criterium of loop, accuracy of sin(Latitude) */
377
#define genau   1.E-12
378
#define genau2  (genau*genau)
379
#define maxiter 30
380

    
381
    double P;        /* distance between semi-minor axis and location */
382
    double RR;       /* distance between center and location */
383
    double CT;       /* sin of geocentric latitude */
384
    double ST;       /* cos of geocentric latitude */
385
    double RX;
386
    double RK;
387
    double RN;       /* Earth radius at location */
388
    double CPHI0;    /* cos of start or old geodetic latitude in iterations */
389
    double SPHI0;    /* sin of start or old geodetic latitude in iterations */
390
    double CPHI;     /* cos of searched geodetic latitude */
391
    double SPHI;     /* sin of searched geodetic latitude */
392
    double SDPHI;    /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
393
    int At_Pole;     /* indicates location is in polar region */
394
    int iter;        /* # of continous iteration, max. 30 is always enough (s.a.) */
395

    
396
    At_Pole = FALSE;
397
    P = sqrt(X*X+Y*Y);
398
    RR = sqrt(X*X+Y*Y+Z*Z);
399

    
400
/*        special cases for latitude and longitude */
401
    if (P/Geocent_a < genau) {
402

    
403
/*  special case, if P=0. (X=0., Y=0.) */
404
        At_Pole = TRUE;
405
        *Longitude = 0.;
406

    
407
/*  if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
408
 *  of ellipsoid (=center of mass), Latitude becomes PI/2 */
409
        if (RR/Geocent_a < genau) {
410
            *Latitude = PI_OVER_2;
411
            *Height   = -Geocent_b;
412
            return ;
413

    
414
        }
415
    }
416
    else {
417
/*  ellipsoidal (geodetic) longitude
418
 *  interval: -PI < Longitude <= +PI */
419
        *Longitude=atan2(Y,X);
420
    }
421

    
422
/* --------------------------------------------------------------
423
 * Following iterative algorithm was developped by
424
 * "Institut für Erdmessung", University of Hannover, July 1988.
425
 * Internet: www.ife.uni-hannover.de
426
 * Iterative computation of CPHI,SPHI and Height.
427
 * Iteration of CPHI and SPHI to 10**-12 radian resp.
428
 * 2*10**-7 arcsec.
429
 * --------------------------------------------------------------
430
 */
431
    CT = Z/RR;
432
    ST = P/RR;
433
    RX = 1.0/sqrt(1.0-Geocent_e2*(2.0-Geocent_e2)*ST*ST);
434
    CPHI0 = ST*(1.0-Geocent_e2)*RX;
435
    SPHI0 = CT*RX;
436
    iter = 0;
437

    
438
/* loop to find sin(Latitude) resp. Latitude
439
 * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
440
    do
441
    {
442
        iter++;
443
        RN = Geocent_a/sqrt(1.0-Geocent_e2*SPHI0*SPHI0);
444

    
445
/*  ellipsoidal (geodetic) height */
446
        *Height = P*CPHI0+Z*SPHI0-RN*(1.0-Geocent_e2*SPHI0*SPHI0);
447

    
448
        RK = Geocent_e2*RN/(RN+*Height);
449
        RX = 1.0/sqrt(1.0-RK*(2.0-RK)*ST*ST);
450
        CPHI = ST*(1.0-RK)*RX;
451
        SPHI = CT*RX;
452
        SDPHI = SPHI*CPHI0-CPHI*SPHI0;
453
        CPHI0 = CPHI;
454
        SPHI0 = SPHI;
455
    }
456
    while (SDPHI*SDPHI > genau2 && iter < maxiter);
457

    
458
/*        ellipsoidal (geodetic) latitude */
459
    *Latitude=atan(SPHI/fabs(CPHI));
460

    
461
    return;
462
#endif /* defined(USE_ITERATIVE_METHOD) */
463
} /* END OF Convert_Geocentric_To_Geodetic */