Statistics
| Revision:

root / org.gvsig.projection / trunk / src / main / java / org / cresques / cts / GeoCalc.java @ 84

History | View | Annotate | Download (15.8 KB)

1
/*
2
 * Cresques Mapping Suite. Graphic Library for constructing mapping applications.
3
 *
4
 * Copyright (C) 2004-5.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,USA.
19
 *
20
 * For more information, contact:
21
 *
22
 * cresques@gmail.com
23
 */
24
package org.cresques.cts;
25

    
26
import java.awt.geom.Point2D;
27

    
28

    
29
/**
30
 * Operaciones relacionadas con las proyecciones y sistemas
31
 * de coordenadas.
32
 *
33
 * cmartinez: Esta clase no deber?a formar parte de una API, pero
34
 * se deja hasta que se aborde el refactoring de libProjection.
35
 *
36
 * @author Luis W. Sevilla (sevilla_lui@gva.es)
37
 */
38
public class GeoCalc {
39
    IProjection proj;
40

    
41
    /**
42
     *
43
     * @param proj
44
     */
45
    public GeoCalc(IProjection proj) {
46
        this.proj = proj;
47
    }
48

    
49
    /* (non-Javadoc)
50
         * @see org.cresques.impl.cts.GeoCalc#distanceGeo(java.awt.geom.Point2D, java.awt.geom.Point2D)
51
         */
52
    public double distanceGeo(Point2D pt1, Point2D pt2) {
53
        double R2 = Math.pow(proj.getDatum().getESemiMajorAxis(), 2);
54
        double dLat = Math.toRadians(pt2.getY() - pt1.getY());
55
        double dLong = Math.toRadians(pt2.getX() - pt1.getX());
56

    
57
        double alfa = Math.toRadians(pt1.getY());
58
        double alfa2 = Math.toRadians(pt2.getY());
59

    
60
        if (Math.abs(alfa2) < Math.abs(alfa)) {
61
            alfa = alfa2;
62
        }
63

    
64
        double ds2 = (R2 * dLat * dLat) +
65
                     (R2 * Math.cos(alfa) * Math.cos(alfa) * dLong * dLong);
66

    
67
        return Math.sqrt(ds2);
68
    }
69

    
70
    /* (non-Javadoc)
71
         * @see org.cresques.impl.cts.GeoCalc#distanceEli(java.awt.geom.Point2D, java.awt.geom.Point2D)
72
         */
73
    public double distanceEli(Point2D pt1, Point2D pt2) {
74
        double lat1 = Math.toRadians(pt1.getY());
75
        double lon1 = -Math.toRadians(pt1.getX());
76
        double lat2 = Math.toRadians(pt2.getY());
77
        double lon2 = -Math.toRadians(pt2.getX());
78

    
79
        double F = (lat1 + lat2) / 2D;
80
        double G = (lat1 - lat2) / 2D;
81
        double L = (lon1 - lon2) / 2D;
82

    
83
        double sing = Math.sin(G);
84
        double cosl = Math.cos(L);
85
        double cosf = Math.cos(F);
86
        double sinl = Math.sin(L);
87
        double sinf = Math.sin(F);
88
        double cosg = Math.cos(G);
89

    
90
        double flat = 1D / proj.getDatum().getEIFlattening();
91

    
92
        double S = (sing * sing * cosl * cosl) + (cosf * cosf * sinl * sinl);
93
        double C = (cosg * cosg * cosl * cosl) + (sinf * sinf * sinl * sinl);
94
        double W = Math.atan2(Math.sqrt(S), Math.sqrt(C));
95
        double R = Math.sqrt((S * C)) / W;
96
        double H1 = ((3D * R) - 1D) / (2D * C);
97
        double H2 = ((3D * R) + 1D) / (2D * S);
98
        double D = 2D * W * proj.getDatum().getESemiMajorAxis();
99

    
100
        return (D * ((1D + (flat * H1 * sinf * sinf * cosg * cosg)) -
101
               (flat * H2 * cosf * cosf * sing * sing)));
102
    }
103

    
104
    /**
105
     * Algrothims from Geocentric Datum of Australia Technical Manual
106
     *
107
     * http://www.anzlic.org.au/icsm/gdatum/chapter4.html
108
     *
109
     * This page last updated 11 May 1999
110
     *
111
     * Computations on the Ellipsoid
112
     *
113
     * There are a number of formulae that are available
114
     * to calculate accurate geodetic positions,
115
     * azimuths and distances on the ellipsoid.
116
     *
117
     * Vincenty's formulae (Vincenty, 1975) may be used
118
     * for lines ranging from a few cm to nearly 20,000 km,
119
     * with millimetre accuracy.
120
     * The formulae have been extensively tested
121
     * for the Australian region, by comparison with results
122
     * from other formulae (Rainsford, 1955 & Sodano, 1965).
123
     *
124
     * * Inverse problem: azimuth and distance from known
125
     *                 latitudes and longitudes
126
     * * Direct problem: Latitude and longitude from known
127
     *                 position, azimuth and distance.
128
     * * Sample data
129
     * * Excel spreadsheet
130
     *
131
     * Vincenty's Inverse formulae
132
     * Given: latitude and longitude of two points
133
     *                 (phi1, lembda1 and phi2, lembda2),
134
     * Calculate: the ellipsoidal distance (s) and
135
     * forward and reverse azimuths between the points (alpha12, alpha21).
136
     */
137
    /* (non-Javadoc)
138
         * @see org.cresques.impl.cts.GeoCalc#distanceVincenty(java.awt.geom.Point2D, java.awt.geom.Point2D)
139
         */
140
    public double distanceVincenty(Point2D pt1, Point2D pt2) {
141
        return distanceAzimutVincenty(pt1, pt2).dist;
142
    }
143

    
144
    /**
145
     * Returns the distance between two geographic points on the ellipsoid
146
     *        and the forward and reverse azimuths between these points.
147
     *       lats, longs and azimuths are in decimal degrees, distance in metres
148
     *        Returns ( s, alpha12,  alpha21 ) as a tuple
149
     * @param pt1
150
     * @param pt2
151
     * @return
152
     */
153
    protected GeoData distanceAzimutVincenty(Point2D pt1, Point2D pt2) {
154
        GeoData gd = new GeoData(0, 0);
155
        double f = 1D / proj.getDatum().getEIFlattening();
156
        double a = proj.getDatum().getESemiMajorAxis();
157
        double phi1 = pt1.getY();
158
        double lembda1 = pt1.getX();
159
        double phi2 = pt2.getY();
160
        double lembda2 = pt2.getX();
161

    
162
        if ((Math.abs(phi2 - phi1) < 1e-8) &&
163
                (Math.abs(lembda2 - lembda1) < 1e-8)) {
164
            return gd;
165
        }
166

    
167
        double piD4 = Math.atan(1.0);
168
        double two_pi = piD4 * 8.0;
169

    
170
        phi1 = (phi1 * piD4) / 45.0;
171
        lembda1 = (lembda1 * piD4) / 45.0; // unfortunately lambda is a key word!
172
        phi2 = (phi2 * piD4) / 45.0;
173
        lembda2 = (lembda2 * piD4) / 45.0;
174

    
175
        double b = a * (1.0 - f);
176

    
177
        double TanU1 = (1 - f) * Math.tan(phi1);
178
        double TanU2 = (1 - f) * Math.tan(phi2);
179

    
180
        double U1 = Math.atan(TanU1);
181
        double U2 = Math.atan(TanU2);
182

    
183
        double lembda = lembda2 - lembda1;
184
        double last_lembda = -4000000.0; // an impossibe value
185
        double omega = lembda;
186

    
187
        // Iterate the following equations,
188
        //  until there is no significant change in lembda
189
        double Sin_sigma = 0;
190

    
191
        // Iterate the following equations,
192
        //  until there is no significant change in lembda
193
        double Cos_sigma = 0;
194
        double Cos2sigma_m = 0;
195
        double alpha = 0;
196
        double sigma = 0;
197
        double sqr_sin_sigma = 0;
198

    
199
        while ((last_lembda < -3000000.0) ||
200
                   ((lembda != 0) &&
201
                   (Math.abs((last_lembda - lembda) / lembda) > 1.0e-9))) {
202
            sqr_sin_sigma = Math.pow(Math.cos(U2) * Math.sin(lembda), 2) +
203
                            Math.pow(((Math.cos(U1) * Math.sin(U2)) -
204
                                     (Math.sin(U1) * Math.cos(U2) * Math.cos(lembda))),
205
                                     2);
206

    
207
            Sin_sigma = Math.sqrt(sqr_sin_sigma);
208

    
209
            Cos_sigma = (Math.sin(U1) * Math.sin(U2)) +
210
                        (Math.cos(U1) * Math.cos(U2) * Math.cos(lembda));
211

    
212
            sigma = Math.atan2(Sin_sigma, Cos_sigma);
213

    
214
            double Sin_alpha = (Math.cos(U1) * Math.cos(U2) * Math.sin(lembda)) / Math.sin(sigma);
215
            alpha = Math.asin(Sin_alpha);
216

    
217
            Cos2sigma_m = Math.cos(sigma) -
218
                          ((2 * Math.sin(U1) * Math.sin(U2)) / Math.pow(Math.cos(alpha),
219
                                                                        2));
220

    
221
            double C = (f / 16) * Math.pow(Math.cos(alpha), 2) * (4 +
222
                       (f * (4 - (3 * Math.pow(Math.cos(alpha), 2)))));
223

    
224
            last_lembda = lembda;
225

    
226
            lembda = omega +
227
                     ((1 - C) * f * Math.sin(alpha) * (sigma +
228
                     (C * Math.sin(sigma) * (Cos2sigma_m +
229
                     (C * Math.cos(sigma) * (-1 +
230
                     (2 * Math.pow(Cos2sigma_m, 2))))))));
231
        }
232

    
233
        double u2 = (Math.pow(Math.cos(alpha), 2) * ((a * a) - (b * b))) / (b * b);
234

    
235
        double A = 1 +
236
                   ((u2 / 16384) * (4096 +
237
                   (u2 * (-768 + (u2 * (320 - (175 * u2)))))));
238

    
239
        double B = (u2 / 1024) * (256 +
240
                   (u2 * (-128 + (u2 * (74 - (47 * u2))))));
241

    
242
        double delta_sigma = B * Sin_sigma * (Cos2sigma_m +
243
                             ((B / 4) * ((Cos_sigma * (-1 +
244
                             (2 * Math.pow(Cos2sigma_m, 2)))) -
245
                             ((B / 6) * Cos2sigma_m * (-3 +
246
                             (4 * sqr_sin_sigma)) * (-3 +
247
                             (4 * Math.pow(Cos2sigma_m, 2)))))));
248

    
249
        double s = b * A * (sigma - delta_sigma);
250

    
251
        double alpha12 = Math.atan2((Math.cos(U2) * Math.sin(lembda)),
252
                                    ((Math.cos(U1) * Math.sin(U2)) -
253
                                    (Math.sin(U1) * Math.cos(U2) * Math.cos(lembda))));
254

    
255
        double alpha21 = Math.atan2((Math.cos(U1) * Math.sin(lembda)),
256
                                    ((-Math.sin(U1) * Math.cos(U2)) +
257
                                    (Math.cos(U1) * Math.sin(U2) * Math.cos(lembda))));
258

    
259
        if (alpha12 < 0.0) {
260
            alpha12 = alpha12 + two_pi;
261
        }
262

    
263
        if (alpha12 > two_pi) {
264
            alpha12 = alpha12 - two_pi;
265
        }
266

    
267
        alpha21 = alpha21 + (two_pi / 2.0);
268

    
269
        if (alpha21 < 0.0) {
270
            alpha21 = alpha21 + two_pi;
271
        }
272

    
273
        if (alpha21 > two_pi) {
274
            alpha21 = alpha21 - two_pi;
275
        }
276

    
277
        alpha12 = (alpha12 * 45.0) / piD4;
278
        alpha21 = (alpha21 * 45.0) / piD4;
279

    
280
        return new GeoData(0, 0, s, alpha12, alpha21);
281
    }
282

    
283
    /**
284
     * Vincenty's Direct formulae
285
     * Given: latitude and longitude of a point (phi1, lembda1) and
286
     * the geodetic azimuth (alpha12)
287
     * and ellipsoidal distance in metres (s) to a second point,
288
     *
289
     * Calculate: the latitude and longitude of the second point (phi2, lembda2)
290
     * and the reverse azimuth (alpha21).
291
     */
292
        /**
293
         * Returns the lat and long of projected point and reverse azimuth
294
         *        given a reference point and a distance and azimuth to project.
295
         *  lats, longs and azimuths are passed in decimal degrees.
296
         * Returns ( phi2,  lambda2,  alpha21 ) as a tuple
297
         * @param pt
298
         * @param azimut
299
         * @param dist
300
         * @return
301
         */
302
    protected GeoData getPointVincenty(Point2D pt, double azimut, double dist) {
303
        GeoData ret = new GeoData(0, 0);
304
        double f = 1D / proj.getDatum().getEIFlattening();
305
        double a = proj.getDatum().getESemiMajorAxis();
306
        double phi1 = pt.getY();
307
        double lembda1 = pt.getX();
308
        double alpha12 = azimut;
309
        double s = dist;
310

    
311
        double piD4 = Math.atan(1.0);
312
        double two_pi = piD4 * 8.0;
313

    
314
        phi1 = (phi1 * piD4) / 45.0;
315
        lembda1 = (lembda1 * piD4) / 45.0;
316
        alpha12 = (alpha12 * piD4) / 45.0;
317

    
318
        if (alpha12 < 0.0) {
319
            alpha12 = alpha12 + two_pi;
320
        }
321

    
322
        if (alpha12 > two_pi) {
323
            alpha12 = alpha12 - two_pi;
324
        }
325

    
326
        double b = a * (1.0 - f);
327

    
328
        double TanU1 = (1 - f) * Math.tan(phi1);
329
        double U1 = Math.atan(TanU1);
330
        double sigma1 = Math.atan2(TanU1, Math.cos(alpha12));
331
        double Sinalpha = Math.cos(U1) * Math.sin(alpha12);
332
        double cosalpha_sq = 1.0 - (Sinalpha * Sinalpha);
333

    
334
        double u2 = (cosalpha_sq * ((a * a) - (b * b))) / (b * b);
335
        double A = 1.0 +
336
                   ((u2 / 16384) * (4096 +
337
                   (u2 * (-768 + (u2 * (320 - (175 * u2)))))));
338
        double B = (u2 / 1024) * (256 +
339
                   (u2 * (-128 + (u2 * (74 - (47 * u2))))));
340

    
341
        // Starting with the approximation
342
        double sigma = (s / (b * A));
343

    
344
        double last_sigma = (2.0 * sigma) + 2.0; // something impossible
345

    
346
        // Iterate the following three equations
347
        //  until there is no significant change in sigma
348
        // two_sigma_m , delta_sigma
349
        double two_sigma_m = 0;
350

    
351
        while (Math.abs((last_sigma - sigma) / sigma) > 1.0e-9) {
352
            two_sigma_m = (2 * sigma1) + sigma;
353

    
354
            double delta_sigma = B * Math.sin(sigma) * (Math.cos(two_sigma_m) +
355
                                 ((B / 4) * (Math.cos(sigma) * ((-1 +
356
                                 (2 * Math.pow(Math.cos(two_sigma_m), 2))) -
357
                                 ((B / 6) * Math.cos(two_sigma_m) * (-3 +
358
                                 (4 * Math.pow(Math.sin(sigma), 2))) * (-3 +
359
                                 (4 * Math.pow(Math.cos(two_sigma_m), 2))))))));
360

    
361
            last_sigma = sigma;
362
            sigma = (s / (b * A)) + delta_sigma;
363
        }
364

    
365
        double phi2 = Math.atan2(((Math.sin(U1) * Math.cos(sigma)) +
366
                                 (Math.cos(U1) * Math.sin(sigma) * Math.cos(alpha12))),
367
                                 ((1 - f) * Math.sqrt(Math.pow(Sinalpha, 2) +
368
                                                      Math.pow((Math.sin(U1) * Math.sin(sigma)) -
369
                                                               (Math.cos(U1) * Math.cos(sigma) * Math.cos(alpha12)),
370
                                                               2))));
371

    
372
        double lembda = Math.atan2((Math.sin(sigma) * Math.sin(alpha12)),
373
                                   ((Math.cos(U1) * Math.cos(sigma)) -
374
                                   (Math.sin(U1) * Math.sin(sigma) * Math.cos(alpha12))));
375

    
376
        double C = (f / 16) * cosalpha_sq * (4 + (f * (4 - (3 * cosalpha_sq))));
377

    
378
        double omega = lembda -
379
                       ((1 - C) * f * Sinalpha * (sigma +
380
                       (C * Math.sin(sigma) * (Math.cos(two_sigma_m) +
381
                       (C * Math.cos(sigma) * (-1 +
382
                       (2 * Math.pow(Math.cos(two_sigma_m), 2))))))));
383

    
384
        double lembda2 = lembda1 + omega;
385

    
386
        double alpha21 = Math.atan2(Sinalpha,
387
                                    ((-Math.sin(U1) * Math.sin(sigma)) +
388
                                    (Math.cos(U1) * Math.cos(sigma) * Math.cos(alpha12))));
389

    
390
        alpha21 = alpha21 + (two_pi / 2.0);
391

    
392
        if (alpha21 < 0.0) {
393
            alpha21 = alpha21 + two_pi;
394
        }
395

    
396
        if (alpha21 > two_pi) {
397
            alpha21 = alpha21 - two_pi;
398
        }
399

    
400
        phi2 = (phi2 * 45.0) / piD4;
401
        lembda2 = (lembda2 * 45.0) / piD4;
402
        alpha21 = (alpha21 * 45.0) / piD4;
403

    
404
        ret.pt = new Point2D.Double(lembda2, phi2);
405
        ret.azimut = alpha21;
406

    
407
        return ret;
408
    }
409

    
410
    /* (non-Javadoc)
411
         * @see org.cresques.impl.cts.GeoCalc#surfaceSphere(java.awt.geom.Point2D, java.awt.geom.Point2D, java.awt.geom.Point2D)
412
         */
413
    public double surfaceSphere(Point2D pt1, Point2D pt2, Point2D pt3) {
414
        double sup = -1;
415
        double A = distanceGeo(pt1, pt2);
416
        double B = distanceGeo(pt2, pt3);
417
        double C = distanceGeo(pt3, pt1);
418
        sup = (((A + B + C) - Math.toRadians(180D)) * Math.PI * proj.getDatum()
419
                                                                    .getESemiMajorAxis()) / Math.toRadians(180D);
420

    
421
        return sup;
422
    }
423

    
424
    /*
425
     * F?rmulas de Vincenty's.
426
     * (pasadas de http://wegener.mechanik.tu-darmstadt.de/GMT-Help/Archiv/att-8710/Geodetic_py
427
     * http://www.icsm.gov.au/icsm/gda/gdatm/index.html
428
     */
429
    protected class GeoData {
430
        Point2D pt;
431
        double azimut;
432
        double revAzimut;
433
        double dist;
434

    
435
        public GeoData(double x, double y) {
436
            pt = new Point2D.Double(x, y);
437
            azimut = revAzimut = dist = 0;
438
        }
439

    
440
        public GeoData(double x, double y, double dist, double azi, double rAzi) {
441
            pt = new Point2D.Double(x, y);
442
            azimut = azi;
443
            revAzimut = rAzi;
444
            this.dist = dist;
445
        }
446
    }
447
}